Квадрат

Задачи повышенной трудности "Треугольники"

141. На сторонах угла POQ отмечены точки A, B, С и D так, что AO = OB и AC = BD (рис. 170). Прямые AD и BC пересекаются в точке E. Докажите, что луч OE – биссектриса угла POQ. Опишите основанный на этом факте способ построения биссектрисы угла.

Биссектриса угла

142. Отрезки AB и CD пересекаются в середине M отрезка AB, причем AC = BD = AM. Докажите с помощью наложения, что точка M является серединой отрезка CD.

Вопросы и задачи к параграфу "Прямоугольные треугольники"

41. а) Докажите, что если четырехугольник ABCD – прямоугольник, то ∠CAD = ∠BDA.

б) Диагонали прямоуголь­ника ABCD пересекаются в точке O. Докажите, что OA = OB = OC = OD.

в) Отрезок AH – высота треугольника ABC, в котором ∠C = 63° и ∠BAH = 27°. Докажите, что AB = AC.

г) На рисунке 116 изображен квадрат ABCD, в котором AP = BQ = CR = DS. Докажите, что четырехугольник PQRS – квадрат.

Прямоугольник

Рассмотрим фигуру, составленную из отрезков AB, BC, CD и DA, никакие два из которых не лежат на одной прямой и не имеют общих точек, отличных от концов. Такая фигура называется четырехугольником ABCD (рис. 90), указанные отрезки называются сторонами, а концы сторон (точки A, B, C, D) – вершинами четырехугольни­ка.

Четырехугольник и прямоугольник

Subscribe to RSS - Квадрат