Симметрия

Учебник: Геометрия, 9 класс (В.Ф. Бутузов, С.Б. Кадомцев, В.В. Прасолов, 2001)
Вопросы и задачи "Геометрические преобразования"

23. а) Постройте фигуру, на которую отображается данный треугольник при симметрии относительно прямой, содержащей биссектрису одного из его внешних углов.
б) Докажите, что при осевой симметрии прямая, параллельная оси, отображается на прямую, параллельную оси.

Движения

Мы говорили, что осевая симметрия является отображением, сохраняющим расстояния. Любое отображение, обладающее этим свойством, называется движением. Таким образом, движение плоскости — это отображение плоскости на себя, сохраняющее расстояния.

О подобии произвольных фигур

Центральное подобие является частным случаем так называемого преобразования подобия.

Осевая симметрия

Пусть a — данная прямая. Каждой точке M сопоставим симметричную ей относительно прямой a точку M1 (рис. 67). В результате каждой точке M будет сопоставлена некоторая точка M1, и каждая точка M1 окажется сопоставленной некоторой точке M, т.

Центральное подобие

Пусть O — данная точка, k — данное число, отличное от нуля.

Учебник: Геометрия, 8 класс (В.Ф. Бутузов, С.Б. Кадомцев, В.В. Прасолов, 2001)
Симметрия

Точки A и A1 называются симметричными относительно точки O, если точка O — середина отрезка AA1 (рис. 68, а). Точка O считается симметричной самой себе.

Subscribe to Симметрия