Площадь

Учебник: Геометрия, 9 класс (В.Ф. Бутузов, С.Б. Кадомцев, В.В. Прасолов, 2001)
Вопросы для повторения "Площадь"

1. Какие многоугольники называются равносоставленными?

2. Докажите, что треугольник равносоставлен с прямоугольником. одна из смежных сторон которого равна половине периметра треугольника, а другая – радиусу вписанной в него окружности.

Вопросы и задачи "Длина окружности и площадь круга"

77. а) Как изменится длина окружности, если радиус окружности увеличить в 3 раза? уменьшить в 2 раза? увеличить в k раз? уменьшить в k раз?
б) Как изменится длина окружности, если радиус окружности увеличить на 1 см?

Вопросы и задачи "Площадь многоугольника"

69. а) Точки M и N — середины сторон AB и AC остроугольного треугольника ABC, отрезки BH и CK — перпендикуляры, проведенные из точек B и C к прямой MN. Докажите, что четырехугольник BCKH и треугольник ABC равносоставлены.
б) Найдите периметр квадрата с площадью 25 см2.

Дополнительные задачи "Площадь"

§ 22
81. Докажите, что многоугольник, описанный около окружности, равносоставлен с прямоугольником, одна из смежных сторон которого равна половине периметра многоугольника, а другая – радиусу окружности.

Задачи повышенной трудности "Площадь"

182. Каждая сторона одного треугольника больше любой стороны другого треугольника. Следует ли из этого, что площадь первого треугольника больше площади второго треугольника?

Некоторые формулы, связанные с правильными многоугольниками

Чтобы получить формулы для вычисления длины окружности и площади круга, нам понадобятся некоторые формулы, связанные с правильными многоугольниками.

Площадь круга

Выведем формулу площади круга радиуса R. Для этого рассмотрим правильный 2n-угольник, описанный около окружности, ограничивающей круг (рис. 90, а), и правильный 2n-угольник, вписанный в эту окружность (рис. 90, б).

Площадь многоугольника

С понятием площади мы часто встречаемся в повседневной жизни. Например, каждый из нас понимает, что означают слова «площадь квартиры равна пятидесяти шести квадратным метрам».

Площадь параллелограмма

Условимся одну из сторон параллелограмма называть основанием, а перпендикуляр, проведенный из любой точки противоположной стороны к прямой, содержащей основание, - высотой параллелограмма.

Площадь прямоугольника

Теорема. Площадь прямоугольника равна произведению его смежных сторон.

Доказательство. Докажем, что площадь прямоугольника ABCD со сторонами AB = a и AD = b равна ab.

Площадь трапеции

Высотой трапеции называется перпендикуляр, проведенный из любой точки одного из оснований к прямой, содержащей другое основание.

Теорема. Площадь трапеции равна произведению полусуммы ее оснований на высоту.

Площадь треугольника

Условимся одну из сторон треугольника называть основанием, а под словом «высота» будем подразумевать ту из высот треугольника, которая проведена к этому основанию.

Площадь четырехугольника

Теорема. Площадь четырехугольника равна половине произведения его диагоналей, умноженного на синус угла между содержащими их прямыми.

Равносоставленные многоугольники

Если один многоугольник разрезан на части и из них составлен другой многоугольник (так, что внутренние области любых двух частей не имеют общих точек), то исходный и полученный многоугольники называются равносоставленными.

Формула Герона

Рассмотрим треугольник ABC со сторонами AB = c, BC = a и CA = b. Выразим его площадь S через a, b и c. Так как S = ½ bc sin A, то достаточно выразить sin A через a, b и c. Из теоремы косинусов следует, что cos A = (1/(2bc)) (b2 + c2 – a2).

Учебник: Математика, 5 класс (Муравины)
Площадь прямоугольника

Длины отрезков мы измеряли с помощью линейки, а величины углов — с помощью транспортира. Еще одну из основных геометрических величин — площадь обычно приходится вычислять.

Subscribe to Площадь