Свойства сложения векторов

Докажем теорему о свойствах сложения векторов.

Доказательство. 1. Если векторы и имеют координаты {x1; y1} и {x2; y2}, то вектор + имеет координаты {x1 + x2; y1 + y2}. Такие же координаты имеет вектор + . Следовательно, + = + .

2. Если векторы , и имеют координаты {x1; y1}, {x2; y2} и {x3; y3}, то вектор ( + ) + имеет координаты

{(x1 + x2) + x3; (y1 + y2) + y3}, т. е. {x1 + x2 + x3; y1 + y2 + y3}.

Такие же координаты имеет вектор + ( + ). Следовательно, ( + ) + = + ( + ). Теорема доказана.

Ненулевые векторы называют коллинеарными, если они лежат либо на одной прямой, либо на параллельных прямых; нулевой вектор считается коллинеарным любому вектору.

Рассмотрим еще один способ обоснования справедливости равенства 1 для неколлинеарных векторов и .

Обратимся к рисунку 60, на котором от точки A отложены векторы = и = и построен параллелограмм ABCD. По правилу треугольника = + = + и = + = + . Следовательно, + = + .


Это доказательство дает нам еще один способ построения суммы двух неколлинеарных векторов и , который называется правилом параллелограмма: нужно отложить от какой-нибудь точки A векторы = и = и построить параллелограмм ABCD (см. рис. 60). Тогда вектор будет равен + . Это правило часто используется в физике, например при сложении двух сил.

Замечание. Из доказанной теоремы следует, что сумма нескольких векторов не зависит от того, в каком порядке они складываются. На рисунке 61 показано построение суммы трех векторов: от произвольной точки A отложен вектор = , от точки B отложен вектор = , а от точки C отложен вектор = . В результате получился вектор , равный
+ +

Аналогичным образом можно построить сумму четырех, пяти, шести (рис. 62) и вообще любого числа векторов. Такой способ построения суммы нескольких векторов называется правилом многоугольника.

Правило многоугольника можно сформулировать и так: если A1, A2, …, An — произвольные точки плоскости, то

Подчеркнем, что это равенство справедливо для любых точек A1, A2, …, An, в частности, в том случае, когда некоторые из них совпадают. Например, если точка A1 совпадает с точкой An, то сумма данных векторов равна нулевому вектору.

Математика: