Извлечение корня с точностью до 0,1; 0,01 и т. д.

Пусть требуется найти с точностью до (с недостатком). Расположим вычисления так:

Мы сначала находим приближенный корень с точностью до 1 только из целого числа 2. Получим 1 (и в остатке 1). Пишем в корне цифру 1 и ставим после нее запятую. Теперь находим цифру десятых. Для этого приписываем к остатку 1 цифры 3 и 5, стоящие направо от запятой, и продолжаем извлечение так, как будто мы извлекали корень из целого числа 235. Полученную цифру 5 пишем в корне на месте десятых. Остальные цифры подкоренного числа (104) нам не нужны. Что полученное число 1,5 будет действительно приближенным корнем с точностью до , видно из следующего; если бы мы находили наибольший целый корень из 235 с точностью до 1, то получили бы 15, значит,

Разделив каждое из этих чисел на 100, получим:

(От прибавления числа 0,00104 двойной знак ≤ должен измениться, очевидно, на знак <, а знак > остается (так как 0,00104 < 0,01).)

Пусть требуется найти с точностью до приближенный с недостатком. Найдем целое число, потом — цифру десятых, затем и цифру сотых. Корень из целого числа будет 15 целых. Чтобы получить цифру десятых, надо, как мы видели, приписать к остатку 23 еще две цифры, стоящие направо от запятой:

В нашем примере этих цифр нет вовсе; ставим на их место нули. Приписав их к остатку и продолжая действие так, как будто находим корень из целого числа 24800, мы найдем цифру десятых 7. Остается найти цифру сотых. Для этого приписываем к остатку 151 еще два нуля и продолжаем извлечение, как будто мы находим корень из целого числа 2480000. Получаем 15,74. Что это число действительно есть приближенный корень из 248 с точностью до с недостатком, видно из следующего. Если бы мы находили наибольший целый квадратный корень из целого числа 2480000, то получили бы 1574, значит,

.

Разделив каждое из этих чисел на 10000 (1002), получим:

,

или

15,742 ≤ 248; 15,752 > 248.

Значит, 15,74 есть та десятичная дробь, которую мы назвали приближенным корнем с недостатком с точностью до до 248.

Правило. Чтобы извлечь из данного целого числа или из данной десятичной дроби приближенный корень с недостатком с точностью до , до , до и т. д., находят сначала приближенный корень с недостатком с точностью до 1, извлекая корень из целого числа (если его нет, пишут в корне 0 целых).

Потом находят цифру десятых. Для этого к остатку приписывают две цифры покоренного числа, стоящие направо от запятой (если их нет, приписывают к остатку два нуля), и продолжают извлечение так, как это делается при извлечении корня из целого числа. Полученную цифру пишут в корне на месте десятых.

Затем находят цифру сотых. Для этого к остатку приписывают снова две цифры, стоящие направо от тех, которые были только что снесены, и т. д.

Таким образом, при извлечении корня из целого числа с десятичной дробью число надо делить на грани по две цифры в каждой, начиная от запятой, как влево (в целой части числа), так и вправо (в дробной части).

Примеры.

В последнем примере мы обратили дробь в десятичную, вычислив восемь десятичных знаков, чтобы образовались четыре грани, потребные для нахождения четырех десятичных знаков корня.