Понятие об алгебраической дроби

1. Определение алгебраической дроби. В § 42 было сказано, что если деление многочленов нельзя выполнить нацело, то частное записывается в виде дробного выражения, в котором делимое является числителем, а делитель, – знаменателем.

Примеры дробных выражений:

Числитель и знаменатель дробного выражения и сами могут быть дробными выражениями, например:

Из дробных алгебраических выражений наиболее часто приходится иметь дело с такими, в которых числитель и знаменатель являются многочленами (в частности, и одночленами). Каждое такое выражение называется алгебраической дробью.

Определение. Алгебраическое выражение, представляющее собой дробь, числитель и знаменатель которой — многочлены, называется алгебраической дробью.

Как и в арифметике, числитель и знаменатель алгебраической дроби называются членами дроби.

Примеры алгебраических дробей:

Заметим, что целое выражение, то есть многочлен, можно записать в виде дроби, для этого достаточно записать в числителе данное выражение, а в знаменателе 1. Например:

2. Допустимые значения букв. Буквы, входящие только в числитель, могут принимать любые значения (если не введены какие-либо дополнительные ограничения условием задачи).

Для букв же, входящих в знаменатель, допустимыми являются только те значения, которые не обращают в нуль знаменатель. Поэтому в дальнейшем всегда будем считать, что знаменатель алгебраической дроби не равен нулю.

3. Значение дроби. Надо различать алгебраическую дробь от ее значения. Значение алгебраической дроби может быть как целым, так и дробным числом, положительным, отрицательным, нулем. Например, значение дроби

при a = 6, b = 3 равно 2;
при a = –5, b = 2 равно ;
при a = 0, b = 5 равно 0.